
Signature _____________________ CSE 11 Name ________________________

 Quiz 3

cs11f ____ Fall 2011 Student ID ____________________

This quiz is to be taken by yourself with closed books, closed notes, no calculators.

What gets printed when the following program is run?

public class While
{
 public static void main(String[] args)
 {
 final int MAX = 11;
 int i = 8, j = 8;

 while (i <= MAX)
 {
 j = i;
 while (j < MAX)
 {
 --j;
 System.out.println(i + " " + j);
 j += 3;
 }
 i++;
 }

 System.out.println(i + " " + j);
 }
}

By default, method headers in a Java interface definition are implicitly

 ____________________________ and ____________________________

Java interface definitions cannot have (list all that are applicable)

The rules for using ActiveObjects from the objectdraw library are (list all that are applicable)

A) method defintions

B) public static final constants

C) constructors

D) instance variables

A) define a class that implements ActiveObject

B) define a class that extends ActiveObject

C) define a start() method

D) call start() as the first line in the constructor

E) call start() as the last line in the constructor

F) define a run() method

G) call run() from the constructor

H) call run() from the begin() method

I) pause() occasionally in start()

J) pause() occasionally in run()

Given the following definitions:

And the following variable definitions:

 Thing1 thing1;
 Thing2 thing2;
 Doable doable;

Indicate which are valid Java statements. Consider each statement executed sequentially in the order it appears.

 1) Invalid Java statement – Compiler Error

 2) Valid Java statement – No Compiler Error

public interface Doable
{
 void doit();
}

public class Thing1 implements Doable
{
 private static final String SPEAK = "Me";

 public Thing1()
 {
 // ctor initialization here
 }

 public String speak()
 {
 return SPEAK;
 }

 public void doit()
 {
 // Thing1 does its thing
 }
}

public class Thing2 implements Doable
{
 public static final String SPEAK = "No, Me";

 public Thing2()
 {
 // ctor initialization here
 }

 public String speak(String s)
 {
 return SPEAK + s;
 }

 public void doit()
 {
 // Thing2 does its thing
 }
}

Hint: What does the compiler know about

any reference variable at compile time (vs.

run time)?

thing2 = new Thing2(); _______

thing2.speak(); _______

thing2.doit(); _______

thing2.speak(" Mine"); _______

String s2 = Thing2.SPEAK; _______

thing1 = new Thing1(); _______

thing1.speak(); _______

thing1.doit(); _______

thing1.speak(" Mine"); _______

String s1 = Thing1.SPEAK; _______

doable = new Thing1(); _______

doable.speak(); _______

doable.doit(); _______

doable = thing2; _______

doable.speak(" Mine"); _______

doable.doit(); _______

thing2 = thing1; _______

thing2 = doable; _______

doable = new Doable(); _______

