
Programming Assignment 6 (100 Points)

Due: 11:59pm Thursday, November 13th

README (10 points)

You are required to provide a text file named README, NOT Readme.txt, README.pdf, or README.doc, with your

assignment in your pa6 directory. There should be no file extension after the file name “README”. Your README should

include the following sections:

Program Description (4 points) : Provide a high level description of both programs. Describe what your programs

do and how you can interact with them. Make these explanations such that your grandmother or uncle or

someone you know who has no programming experience can understand what this program does and how to use

it.

Write your READMEs as if it was intended for a 5 year old. Do not assume your reader is a computer science

major.

Short Response (6 points) : Answer the following questions:

 Vim related questions:

1. In vim, how do you move the cursor to the end of a line with a single command? To the beginning of a line

with a single command?

2. How do you highlight/select a line in vim?

Java related questions:

3. What does the keyword static mean in regards to variables?

4. What does the keyword static mean in regards to methods? Provide an example use of a static method.

5. What is overriding? Give an example from a previous/current assignment.

Unix related questions:

6. Using the cut command, how do you extract out only the columns 5 through 13 in a file named foo?

STYLE (20 points)

Please see previous programming assignments. A full file header for your README is not needed, but still need to put

your name and cs11f login at the top. However, all other style guidelines apply to all the files (e.g. over 80 characters

apply to READMEs as well.)

You will be specifically graded on commenting, file headers, class and method headers, meaningful variable names,

sufficient use of blank lines, not using more than 80 characters on a line, perfect indentation, no magic numbers/hard-

coded numbers other than zero, and use of accessor/mutator methods to access private fields (getters and setters)

where specified.

CORRECTNESS (70 points)

For this assignment, you are asked to create two different games for pre-schooler children to learn what sounds

different animals make when they speak – AnimalSpeak and Memory.

Program 1: AnimalSpeak (35 points)

Part 1: Use provided interface types

1. The Speakable interface:

import objectdraw.*;

public interface Speakable {

 public String speak();

 public boolean contains(Location point);

}

2. The Highlightable interface:

import java.awt.Color;

public interface Highlightable {

 public void showHighlight(Color color);

 public void hideHighlight();

 public Color getHighlightColor();

}

3. The AnimalCard interface, which basically extends the two interfaces above:

interface AnimalCard extends Speakable, Highlightable { }

Part 2: Animal Classes

You will create 6 animal classes: Puppy, Kitty, Lion, Lamb, Cow, Duck.

Each of these animal classes will implement the AnimalCard interface. For example:

 public class Puppy implements AnimalCard { ... }

Six animal images are available for you in ~/../public/PA6-images/. They are cow.jpg, duck.jpg, kitty.jpg, lamb.jpg,

lion.jpg, and puppy.jpg.

Each animal class will hold the specifics about that animal:

• Animal’s image (a VisibleImage created from passing an Image object to its constructor)

• contains() method to determine whether some point is contained in the VisibleImage associated with that

(Hint: check VisibleImage’s contains() method)

• speak() method to print what sound this animal makes when it speaks Be sure to use a constant (private

static final) for the String this animal speaks. Use the following generic animal sounds for each animal:

Puppy: “Woof”

Lion: “Roar”

Lamb: “Baaa”

Kitty: “Meow”

Cow: “Moo”

Duck: “Quack”

• Specifics about animal’s highlighted status. You can use a FramedRect object to create the highlighting

around an image. You should access this FramedRect object inside the three methods showHighlight(),

hideHighlight(), and getHighlightColor().

Part 3: AnimalSpeak Applet

Create the following applet in AnimalSpeak.java:

 public class AnimalSpeak

This is the controller class (extends WindowController) for

this first program.

In order to integrate the jpg images into each of the

Animal classes (Cow.java, Duck.java, etc), you need to use

the getImage method. For example:

getImage(“cow.jpg”)

This method will return an Image object. You should pass

this object as a parameter to the Animal’s constructor,

and inside that Animal’s class, convert that image into a

VisibleImage object.

This class will handle layout of the animal images in rows with three images per row, as shown in the image above.

It will then call a method named pickAnAnimal(), which picks a random int between 0 and (number of images - 1),

uses a switch statement to assign a generic AnimalCard reference to a specific animal object, and uses that

generic reference to build the following String:

 "Which animal says " + animal.speak() + "?"

The above string should be displayed in a Text object centered horizontally and 20 pixels up from the bottom edge

of the canvas/window.

This controller class also handles the mouse click events by checking if the user clicked on the correct image

(remember the contains() method in each animal class).

Below are different scenarios that your AnimalSpeak program must handle:

AnimalSpeak Scenario 1: User clicks on CORRECT image

If the user DOES click on the correct image, display the message:

 "CORRECT! -- Click mouse to restart."

The above string should be a Text object centered horizontally and 40 pixels up from the bottom edge of the

canvas/window. Additionally, create a green highlight border two pixels thick (two FramedRects) around the

correct animal's image. You might want to think about which class would be most convenient to keep track of

these FramedRect highlights.

If the user clicked on the correct image, set the generic AnimalCard reference used in this check to null. You can

use this to key on the next mouse click event that should blank out the correct/incorrect Text and call

pickAnAnimal() again to randomly pick an animal to ask the user what sound that animals speaks.

Important:

After a correct image has been selected, the user should be able to click anywhere on canvas (including clicking on

other images or previously selected correct image or white space) to reset the program. Resetting means that

correct message and highlighting should be cleared, and a new animal should be chosen.

If this click to reset the program is on an animal image, the click should not be registered as a click to choose that

animal for the next round. For example, after a correct animal is clicked and the user makes another click on a

different animal image to reset, no highlighting or correct/incorrect message should appear. Only the prompt

displaying “Which animal says…” should be updated with new randomly chosen animal.

Assume applet will NOT be resized.

AnimalSpeak Scenario 2: User clicks on INCORRECT image

If the user DOES NOT click on the correct image, display the message

 "WRONG - Try Again!"

The above string should be a Text object centered horizontally and 40 pixels up from the bottom edge of the

canvas/window, same as the Text object for correct message. Additionally, create a red highlight border two pixels

thick (two FramedRects) around the wrong animal's image the user clicked on.

AnimalSpeak Scenario 3: User clicks OUTSIDE of any image

If the user clicks outside of any image, all highlighting should be cleared, and the CORRECT or WRONG message

should be blanked out.

Make sure to complete Program 1: Animal Speak

BEFORE

starting Program 2: Memory.

Program 2: Memory (35 points)

The second program is a memory concentration

game.

Part 1: Layout

The applet will be a playing board containing 12 tiles

arranged in a 3x4 grid. These tiles are place holders

for images of animals. Initially, each image will be

hidden, and only a black highlight border (one pixel

thick) for each image will be displayed. This

information is summarized by the example picture

of the applet to the right:

Part 2: Hideable Interface

In order to allow an animal image to be hidden, you

will need the following Hideable interface:

public interface Hideable

{

 public abstract void show();

 public abstract void hide();

}

Part 3: Modify AnimalCard Interface

AnimalCard interface you created in the first program will

need to be modified in two ways:

1. Add the new Hideable interface to the list of

interfaces that are extended by AnimalCard.

2. Add an equals() method to the AnimalCard

interface. Both of these changes are shown

below:

interface AnimalCard extends Speakable,

Highlightable, Hideable

{

 @Override

 public abstract boolean equals(Object

o);

}

Be sure to add the “@Override” before the equals()

method definition in each of the classes that implements

the AnimalCard interface. This way the compiler will warn you if you are not actually overriding the superclass’s

method.

Part 4: Modify animal classes

Next, you will need to implement the show(), hide(), and equals() method for each animal that implements the

AnimalCard interface.

The show/hide methods should simply show or hide the VisibleImage object associated with animal. The equals()

method should check whether its argument is the same animal/type as the animal on which the equals() method

is called.

Part 5: Memory.java

 Create the following applet:

public class Memory

This is the controller class (extends

WindowController) for this second program, and

should create the layout as described and illustrated

above in Part 1.

This controller class will re-use much of the same

code that you have written for your 6 animal classes.

The only additions are the show(), hide(), and

equals() methods just mentioned, along with the

logic of this game itself.

For the 12 tiles on the Memory board, there will

be 6 unique images, and each image will be placed

in two randomly selected tiles on the board. Then

the user should be allowed to uncover two images at

a time. The state of the program should change in

the fashion described below:

1. When the applet is loaded, all 12 images

should be initially hidden.

2. When the user clicks on any hidden tile, simply

uncover the image for that tile (make the

image visible using the show() method you

defined in the animal classes)

3. If the user clicks on the same tile they just uncovered, nothing should happen. If the user clicks on a

different hidden tile, also uncover that image, and then take one of the following two actions:

a. If the two images uncovered DO NOT match, then both images should be highlighted with a red

border two pixels thick (two FramedRects). Now, when the user clicks anywhere on the board,

both of these images should be re-hidden (using the hide() method of the relevant animal class),

and both images' borders should be turned back to black (one pixel thick). To check whether two

images match, use the equals() method of one image, passing in the second image as an

argument. (HINT: use getClass().)

b. If the two images uncovered DO match, then both images should be highlighted with a green

border two pixels thick (two FramedRects). Additionally, use the speak() method in the animal

classes to display the animal sound in a Text object 20 pixels up from the bottom edge of the

canvas. Now these two images should remain visible with the same green highlight border for

the remainder of the game.

4. If there are still any uncovered (unmatched) tiles remaining, the program starts from state (2) again.

Otherwise, the program ends in the final state, state (5). NOTE: If the user clicks on a tile after having

uncovered two non-matching images, then the same click should first cause the non-matching images to

be hidden, AND the same click should then cause the clicked tile to become visible (if it was a hidden tile).

5. At this point, all tiles have been matched and are currently highlighted green. The game is over, and there

is nothing else left to do.

Important:

Unlike in AnimalSpeak, clicking on whitespace for Memory program does nothing. The only way to reset

Memory program is by restarting the applet.

When two matching images are picked, the sound related to the animal should remain until next pair of

correctly selected animal. For example, if two kittens were matched correctly, the Text “Meow” should stay until

next pair of correctly selected animal for which, the Text should update accordingly.

There never should be a case where there is a single image of an animal with highlighted border.

Clicking on already uncovered correct image should not do anything, and should not be checked for correct or

incorrect pairing with other images.

Clicking on the same image multiple times after it has been uncovered (but unmatched) should not count as

comparisons with itself. For example, if a click has been made on a single kitten image and the user repeatedly

clicks on the same image, the kitten image should not compare to itself and have green highlighted border.

Assume applet will NOT be resized.

Running

To run (and view) your AnimalSpeak applet, first create an html file named AnimalSpeak.html, which contains the

following code:

<html>

 <body>

<applet code="AnimalSpeak.class" archive="objectdraw.jar" width="305"

height="300"></applet>

 </body>

</html>

Then use the appletviewer command specifying this html file:

> appletviewer AnimalSpeak.html

You must have all the files in the pa6 directory and run appletviewer in the pa6 directory for it to display correctly.

To run (and view) your Memory applet, you will have to resize the applet's width and height values in

Memory.html. Try to make the applet the same general proportion as the pictures above.

Turnin

To turnin your code, navigate to your home directory and run the following command:

> turnin pa6

You may turn in your programming assignment as many times as you like. The last submission you turn in before

the deadline is the one that we will collect.

Verify

To verify a previously turned in assignment,

> verify pa6

If you are unsure your program has been turned in, use the verify command. We will not take any late files you

forgot to turn in. Verify will help you check which files you have successfully submitted. It is your responsibility

to make sure you properly turned in your assignment.

Files to be collected

Source Files Images Misc.

AnimalCard.java

AnimalSpeak.html

AnimalSpeak.java

Speakable.java

Hideable.java

Highlightable.java

Memory.html

Memory.java

Cow.java

Duck.java

Kitty.java

Lamb.java

Lion.java

Puppy.java

cow.jpg

duck.jpg

kitty.jpg

lamb.jpg

lion.jpg

puppy.jpg

README

objectdraw.jar

Extra Credit (5 points)

1. Early Turn-In [2pts total]

 Turn in by Tuesday, November 11
th

 to receive full 2 pts

 Turn in by Wednesday, November 12
th

 to receive 1 pt

2. Adding Extra Animals [3pts total]

Add at least 3 more animals and their images to both programs. Find an appropriate image, crop to a square,

resize to 100x100 pixels.

For AnimalSpeak (1 pt), this will require an extra row of 3 images.

For Memory (2 pts), this will require two extra rows of 3 images each.

Change the height attribute in your .html files appropriately so these new rows display properly.

NO LATE ASSIGNMENTS ACCEPTED!

START EARLY!

…and HAVE FUN!

