
Programming Assignment 10 (100 Points)

Due: 11:59pm Thursday, December 11

README (10 points)

You are required to provide a text file named README, NOT Readme.txt, README.pdf, or
README.doc, with your assignment in your pa10 directory. There should be no file extension after the file
name “README”. Your README should include the following sections:

Program Descriptions (5 points) : Provide a high level description of what each of your programs do and
how you can interact with them. Make this explanation such that your grandmother or uncle or someone you
know who has no programming experience can understand what these programs do and how to use them. Do
not assume your reader is a computer science major. The more detailed the explanation, the more points
you will receive.

Short Response (5 points) : Answer the following questions: (it may be easier to answer these questions
after you have completed this assignment)

1. How would you test whether the copy constructors in the shape classes are doing a deep copy instead
of a shallow copy?

For example, given:

 CSE11_Line line1 = new CSE11_Line();

 CSE11_Line line2 = new CSE11_Line(line1);

 How would you write a test to determine if CSE11_Line’s copy constructor is doing a deep copy?

2. On a similar note, how would you test for the equals() method in CSE11_Line to determine if it is doing
a deep comparison vs. a shallow reference comparisons?

For example, given:

Point point1 = new Point(0, 0);

Point point2 = new Point(100, 100);

 CSE11_Line line1 = new CSE11_Line(point1, point2);

 CSE11_Line line2 = new CSE11_Line(point1, point2);

 How would you write a test to determine if CSE11_Line’s equals() method is doing a deep copy?

STYLE (20 points)

Please see preview programming assignments.

You will be specifically graded on commenting, file headers, class and method headers, meaningful variable
names, sufficient use of blank lines, not using more than 80 characters on a line, perfect indentation, no magic
numbers/hard-coded numbers other than zero, and use of accessor/mutator methods.

CORRECTNESS (70 points)

All files related to this HW need to be in a directory named pa10 in your cs11 course-specific account on
ieng6.ucsd.edu

Shape Hierarchy

Write a set of classes to implement a simple hierarchy of Shapes as follows:

import java.awt.*;

import objectdraw.*;

public abstract class Shape

 private String name;

 public Shape() { ... }

 public Shape(String name) { ... }

 public String getName() { ... }

 private void setName(String name) { ... }

 /* Copy this as is in your Shape.java */

 @Override

 public boolean equals(Object o) {

 String s = "\n**\n"

 + "This should never print. If it does print, then\n"

 + "you did not override equals() properly in class "

 + this.getClass().getName() + "\n"

 + "**\n";

 System.out.println(s);

 return this == o;

 }

 public abstract void move(int xDelta, int yDelta);

 public abstract void draw(DrawingCanvas canvas, Color c, boolean fill);

import java.awt.*;

import objectdraw.*;

public class CSE11_Line extends Shape

 private Point start;

 private Point end;

 public CSE11_Line() { ... }

 public CSE11_Line(Point start, Point end) { ... }

 public CSE11_Line(CSE11_Line line) { ... }

 public void move(int xDelta, int yDelta) { ... }

 @Override

 public String toString() { ... }

 @Override

 public boolean equals(Object o) { ... }

 @Override

 public int hashCode() { ... }

 public void draw(DrawingCanvas canvas, Color c, boolean fill) { ... }

 and appropriate public get/accessor methods - for example: public Point getStart() ...

 and private set/mutator methods - for example: private void setStart(Point p) ...

import java.awt.*;

import objectdraw.*;

public class Circle extends Shape

 private Point center;

 private int radius;

 public Circle() { ... }

 public Circle(Point center, int radius) { ... }

 public Circle(Circle c) { ... }

 public void move(int xDelta, int yDelta) { ... }

 @Override

 public String toString() { ... }

 @Override

 public boolean equals(Object o) { ... }

 @Override

 public int hashCode() { ... }

 public void draw(DrawingCanvas canvas, Color c, boolean fill) { ... }

 and appropriate get/accessor methods - for example: public Point getCenter() ...

 and private set/mutator methods - for ex: private void setCenter(Point center) ...

public abstract class ARectangle extends Shape

 private Point upperLeft; // Upper left corner - Common to all rectangular shapes

 public ARectangle() { ... }

 public ARectangle(String name, int x, int y) { ... }

 public ARectangle(String name, Point upperLeft) { ... }

 public ARectangle(ARectangle r) { ... }

 public void move(int xDelta, int yDelta) { ... }

 @Override

 public String toString() { ... } // getName() + upperLeft

 @Override

 public boolean equals(Object o) { ... } // std checks + upperLeft

 @Override

 public int hashCode() { ... }

 and appropriate get/accessor method - for example: public Point getUpperLeft() ...

 and private set/mutator method - for example: private void setUpperLeft(Point p) ...

import java.awt.*;

import objectdraw.*;

public class Rectangle extends ARectangle

 private int width;

 private int height;

 public Rectangle() { ... }

 public Rectangle(int x, int y, int width, int height) { ... }

 public Rectangle(Point upperLeft, int width, int height) { ... }

 public Rectangle(Rectangle r) { ... }

 @Override

 public String toString() { ... } // super.toString() + width + height

 @Override

 public boolean equals(Object o) { ... } // super.equals() + width + height

 public void draw(DrawingCanvas canvas, Color c, boolean fill) { ... }

 and appropriate get/accessor methods - for example: public int getWidth() ...

 and private set/mutator methods - for example: private void setWidth(int w) ...

 NOTE: upperLeft Point, move(), and hashCode() inherited from ARectangle

import java.awt.*;

import objectdraw.*;

public class Square extends ARectangle

 private int side;

 public Square() { ... }

 public Square(int x, int y, int side) { ... }

 public Square(Point upperLeft, int side) { ... }

 public Square(Square r) { ... }

 @Override

 public String toString() { ... } // super.toString() + side

 @Override

 public boolean equals(Object o) { ... } // super.equals() + side

 public void draw(DrawingCanvas canvas, Color c, boolean fill) { ... }

 and appropriate get/accessor methods - for example: public int getSide() ...

 and private set/mutator methods - for example: private void setSide(int side) ...

 NOTE: upperLeft Point, move(), and hashCode() inherited from ARectangle

import java.awt.*;

import objectdraw.*;

public class Triangle extends Shape

 private Point p1;

 private Point p2;

 private Point p3;

 public Triangle() { ... }

 public Triangle(Point p1, Point p2, Point p3) { ... }

 public Triangle(Triangle tri) { ... }

 public void move(int xDelta, int yDelta) { ... }

 @Override

 public String toString() { ... }

 @Override

 public boolean equals(Object o) { ... }

 @Override

 public int hashCode() { ... }

 public void draw(DrawingCanvas canvas, Color c, boolean fill) { ... }

 and appropriate get/accessor methods - for example: public Point getP1() ...

 and private set/mutator methods - for example: private void setP1(Point p1) ...

****** Not part of the Shape hierarchy ******

public class Point

 private int x;

 private int y;

 public Point(){ ... }

 public Point(int x, int y) { ... }

 public Point(Point point) { ... }

 public int getX() { ... }

 public int getY() { ... }

 private void setX(int x) { ... } // Private! so Points are immutable

 private void setY(int y) { ... } // Private! so Points are immutable

 public void move(int xDelta, int yDelta) { ... }

 @Override

 public String toString() { ... }

 @Override

 public boolean equals(Object o) { ... }

 @Override

 public int hashCode() { ... }

Because the objectdraw library already has a Line type, we name our Line type CSE11_Line as to not
confuse/conflict with the objectdraw library's Line. The draw() method in our CSE11_Line will use the
objectdraw library's Line type.

Most of the above constructors and methods are self-explanatory. The move() method adjusts the shape
xDelta pixels in the X direction and yDelta pixels in the Y coordinate. Just add these deltas to the shape's
current X and Y location depending on how that shape's location is represented -- CSE11_Line: both start and
end Points; Circle: center Point; Rectangle: upperLeftCorner Point; Triangle: all 3 Points.

All accessing of private data in each class must be made through the appropriate get/accessor and
set/mutator methods; do not directly access data, including in constructors. The only place where direct
access is allowed is in the actual accessor/mutator methods

The draw() method should create the appropriate objectdraw library object to draw on the canvas parameter.
The boolean parameter fill indicates whether the graphical object should be filled or not (for example, for Circle
whether a FilledOval or a FramedOval should be created). This has no meaning in CSE11_Line. If the Color
parameter is null, use Color.BLACK (default).

Copy constructors initialize the instance variables from an existing object of the same type to this newly
created object. If the variable is a primitive data type, just copy the value of this primitive type from the existing
object to this object (assignment through mutator method). If the variable is a reference to an object, create a
new copy of the object this variable is referencing (by invoking that variable's copy ctor) and assign this
resulting new copy of the object to this object's instance variable. This should result in a deep copy.

For example, in class Center's copy ctor,

public Circle(Circle c)

to set the center instance variable properly to a new Point based on the parameter's center Point:

this.setCenter(new Point(c.getCenter()));

Test files are provided in ~/../public/PA10/

TestMickey.java (and TestMickey.html)

TestHouseWithDelays.java and TestHouseWithDelaysController.java (and

TestHouseWithDelays.html)

TestMickey uses class Shape, class Point, and class Circle. This is a good one to start with to test your class
Shape, Circle, and Point.

TestHouseWithDelays draws a house using all the various shapes in a delayed fashion so you can see the
different objects being drawn.

We will compile and use these test programs against your shapes sources to grade this assignment (in
addition to using some of our own test cases).

Example screen shots:

For TestHouseWithDelays, if the text does not fit horizontally you are welcome to change the dimensions of the
applet. If you have problems with this test, you are allowed to comment out parts of TestHouseWithDelays.java
to draw only certain sections of the house at a time to make debugging easier. But in the end all of this test
case should work properly.

Note: The last Point coordinate represents the value of the last Point to draw a filled Triangle (roof) with
multiple (framed) Triangles with a changing Y value of the upper Point. You will see this value change as you
run the test program as the roof is filled in

If any exceptions are thrown when you run your program, an error message will pop up in your window. The
error message indicates that some sort of exception has been thrown in your terminal. You must fix these
exceptions! To understand and fix what these exception in the terminal are telling you, you can use the same
logic that was on the midterm and discussed in class.

Here are two examples of error messages and exceptions you may see:

$ appletviewer TestMickey.html

java.lang.NullPointerException

 at TestMickey.makeMickey(TestMickey.java:54)

 at TestMickey.begin(TestMickey.java:17)

 at objectdraw.WindowController.helpinit(WindowController.java:70)

 at objectdraw.Controller.init(Controller.java:82)

 at sun.applet.AppletPanel.run(AppletPanel.java:435)

 at java.lang.Thread.run(Thread.java:722)

Files to be turned in:

• Point.java

• Shape.java

• CSE11_Line.java

• Circle.java

• ARectangle.java

• Square.java

• Rectangle.java

• Triangle.java

• objectdraw.jar

$ appletviewer TestMickey.html

java.lang.IllegalStateException:

This should not print!!!

Testing Point equals() with null

 at TestMickey.makeMickey(TestMickey.java:95)

 at TestMickey.begin(TestMickey.java:17)

 at objectdraw.WindowController.helpinit(WindowController.java:70)

 at objectdraw.Controller.init(Controller.java:82)

 at sun.applet.AppletPanel.run(AppletPanel.java:435)

 at java.lang.Thread.run(Thread.java:722)

Extra Credit (5 points)

Add a new shape class named CSE11_Polygon. Class CSE11_Polygon should inherit from class Shape. It
should have 3 constructors: a no-arg ctor (basically an empty polygon), a copy ctor (to perform a deep copy),
and a ctor that takes an array of Points. This array of Points defines the closed polygon shape such that a
CSE11_Line is drawn between the Points specified in the array with a line between the last Point and the first
Point to close the polygon shape. Make sure to copy the array to a private instance variable (do not just
perform a simple assignment; you need a full copy of the array so any changes to the actual argument array
will not affect the polygon).

Override toString(), equals(), and hashCode() similar to the other shapes in this assignment.

Provide an appropriate implementation for draw() and move(). You can ignore the fill parameter -- just
implement a framed polygon in the specified color.

Write a test driver program to test all the constructors and methods in this new class. Create several polygons
with different number of Points, move them, copy them, draw them, check for equality, check that the copy ctor
performs a deep vs. shallow copy, etc. For example, multi-point stars, parallelograms, pent/hex/octagons,
trapezoids, non-symmetrical polygons, origami shapes, Pokemon Polygon, etc.

In your README file, explain your extra credit implementation and your test driver (what it is supposed to
display and what parts of the new class it tests) and how to run your extra credit code.

Files:

CSE11_Polygon.java
TestCSE11_Polygon.java
TestCSE11_Polygon.html

.

